
DTIC FILE COPY (

TECHNICAL REPORT BRL-TR-3120

BRL
SHOCK TUBE STUDIES OF THE IGNITION

OF TRIETHANOL AMMONIUM NITRATE IN NITROUS OXIDE:
Nd PRELIMINARY RESULTS

A DTIC

8%IML.JEY CTE 0  RICHARD A. BEYER

SEP 13 1990D

JUNE 1990

APPROVED FOR PUBLIC RELEASE. DISTRIBUTION UNLMITED.

U.S. ARMY LABORATORY COMMAND

BALLISTIC RESEARCH LABORATORY
ABERDEEN PROVING GROUND, MARYLAND



NOTICES

Destroy this report when it is no longer needed. DO NOT return it to the originator.

Additional copies of this report may be obtained from the National Technical Information Service,
U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161.

The findings of this report are not to be construed as an official Department of the Army position,
unless so designated by other authorized documents.

The use of trade names or manufacturers' names in this report does not constitute indorsement of
any commercial product.



lINCLASSIFIF_
REPORT DOCUMENTATION PAGE

sem,M W~ Of eOMM Ofi 10~ -6 m ObAS 0 &#Woo I, AWUU MR06Umg MOM umW ge mm wlom m -e , prn~mmu . -, m e m q em - . Iw w wm asua Is',.. Omm -Zm ov.g ' O - am .Ws f'

12Mws" sw ow tuyin.9a J n 5dm~t": emt offi. maes. a". kl 'w' ms Paws m4tS

I. AGENCV USE ONLY (L-e Blan) 2. EPORT DATE J. .REPORT TYPE AND WaS C wEIRD
I June 1990 Interium Mar 89 - Sep 89

4. TLE ANO SUITS. L EUINMjwx
SHOCK TUBE STUDIES OF THE IGNITION OF
TRIETHANOL AIMONIUi NITRATE IN NITROUS
,OXIDE: PRELI IINARY RESULTS 1L161 102AH43
S. AUTWOR(S)

RICHARD A. BEYER

7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES) 6. PERFORMING ORGANIZATION
REPORT NUMBER

*. SPONSORINGIMONITORING AGENCY NAME(S) AND ADOOASS(ES) 10. SPONSORING I MONITORING
AGENCY REPOT NUMBER

Ballistic Research Laboratory
ATTN: SLCBR-DD-oT BRL-TR-3120
Aberdeen Proving Ground, MD 21005-5066

11. SUPPLEMENTARY NOTES

Published in Proceedings, 1)89 JANNAF Combustion Meeting.

Ila. DISTRIBUTION I AVAILABILITY STATEMENT 12b. OSTRISUTION COOE

Approved for public release;
distribution unlimited

I3. ABSTRACT (Mammum 00wonk)

Triethanol ammonium nitrate (TEAN) has been shown to ignite and burn with
significant light emission and pressure generation in a nitrous oxide/argon mixture
heated in a shock tube. Ignition threshold is above 1300 K. Ignition delay is a
function of pressure and temperature of the gas. Ignition in similar oxygen
mixtures takes place in shorter times and at lower temperatures than with N2b.
Calculations on the rate of thermal decomposition of the N2O indicate that this
process may be important of the time scale of ignition. .'

14. SUICT TIRMS IL NUMBR OF PAUS
23

Liquid Propellant, Triethanol Ammonium Nitrate, W Pal COO
Shock Tube, Ignition -.,

'7. SECUM €LSSNICLT IS. SELCURTY cLASIP"TIO I 19. SScuM CLASRVA N '6. LMrAWON OF ABSTRACT
0 REPORT O THIS PAGE Of AlSTRACT

Unclassified Unclassified Unclassified UL

RON 75 .ZUn-SS00 Standard form 2"6 (Rev 2-09), o.o UNCLASiI . . .mill1



INTeMTONALLY IMT fLANK.



TABLE OF CONTENTS

Page

LIST OF FIGURES ...................................... ............ v

ACKNOWLEDGEMENT ................................................ vii

I. INTRODUCTION .................................. . .................. 1

II. THE STABILITY OF NITROUS OXIDE ................................... I

III. EXPERIMENTAL .................................................... 2

IV. OBSERVATIONS ..................... . .......... ... 3

V. DISCUSSION ....................................................... 4

VI. SUMMARY ...................... . .. ............ . ... . ..... ..... 4

REFERENCES............. .......... ....... .... ........ .11

DISTRIBUTION LIST.... .......... ..... ..... .... ...... .13

AcCeSjori For

NTIS CRA&I
D IC TAB 0

U;iannou. iced 0
Ju stf 'c3 ton f i

By
Oistribut on I

Avaidbiliity Codes

Av.-)r r'd or
Dist ;pec al

tii



Intentionally Left Blank

iv



LIST OF FIGURES

Figure Page

1 Calculated Fraction of N20 as a Function of Time for
Various Pressures at (a) 1200 K and (b) 1400 K ................... 5

2 Schematic Diagram of Test End of Shock Tube ...................... 6

3 Light Signals With and Without TEAN in N20 Shocked to 1500 K
and 4.6 Atn Pressure ............................................. 7

4 Light Signals With and Without TEAN in N20 Shocked to 1460 K
and 3.2 Atm Pressure ..................... o ...................... 8

5 Difference of Pressure Pulses and Light Emi23ion from
TEAN in N20 Shocked to 1350 K and 4.5 Am ................... .. 9

V



Intentionally Left Blank

vi



ACKNOWLEDGEMENT

This study was initiated following discussions with Nathan Klein of BRL

on the decomposition and pathways to ignition of hydroxyl ammonium nitrate

(HAN) based liquid propellants. Dr. Klein also provided the samples of

triethanol ammonium nitrate (TEAN) crystals. Dr. William R. Anderson of BRL

provided assistance with the N20 decomposition calculations.

vii



intentionally Left Blank

viii



I. INTRODUCTION

Liquid propellants based on aqueous solutions of hydroxyl ammonium

nitrate (HAN) and various fuels have been the subject of extensive studies. 1

In particular, the propellants designated LP1845 and LP1846, where the fuel is

triethanol ammonium nitrate (TEAN), have been the focus of ignition studies in

our laboratory. It is strongly suggested as a result of these and other
studies that the order of involvement of the components is water
(evaporation), RAN (thermal decomposition), and TEAN (oxidation/thermal

decomposition). Because the TEAN is subjected to the nitrogen oxides formed
in HAN decomposition, it is possible that it is either oxidized directly or

that it thermally decomposes with its products reacting for energy release.
In the present study, we present preliminary results for a study of the direct

oxidation of TEAN by the predominant nitrogen oxide expected in this
environment, nitrous oxide (N2 0).

II. THE STABILITY OF NITROUS OXIDE

Although one would like to perform these studies in a straightforward

experiment where the TEAN is introduced into a flow of the hot oxidizer, some
care must be taken. In particular, although N20 is quite stable under ambient

conditions, it is well known to decompose at the temperatures that might be
required for rapid ignition of a solid material. For this reason, a brief
effort was made to calculate the times over which experiments could be done

with hot N2 0 before it had substantially decomposed. In addition to the loss
of the initial oxidizer, one must also be concerned with the growth of product
species which might be much more reactive. Although any decomposition of the
oxidizer is of course a part of the reaction process, it is desirable that any
observations are made with a knowledge of the composition of the gases
present.

Calculations to model the thermal deSomaposition of N2 0 were performed

using the CHEIIIN package of subroutines. A simple model was used by
adapting a sample problem at the end of the manual. lie assumed a zero
dimensional, homogeneous distribution of all reactants under constant
pressure, adiabatic conditions. The kinetic scheme and associated rate

constants which were used are given in Table 1. Values were taken from the
literature, but this was not intended to be a rigorous modeling effort; rather

it was simply desired to get an order of magnitude estimate of the time

available for observations in hot N2 0.

Typical results for the mixtures and temperatures of these experiments

are shown in Figure 1. Two major trends are quite apparent in this figure.
The first is that with increasing temperature, the amount of time available

for experiment before major loss of N20 goes down rapidly. The second trend
is that available time goes down rapidly with pressure. Not shown here is the

additional dependence of N20 lifetime on dilution. As the N20 is diluted
further by argon, the lifetime also increases. In all cases, it is quite

clear that there is probably not time available for a heated flow experiment.
In fact, following these calculations, it was decided that this study could

probably be performed best in a shock tube where the temperature and pressure

are raised almost instantaneously on the time scales of expected reactions.
As a shock tube was becoming available for ignition studies at the time of

these calculations, studies were pursued with it.
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Table 1. Kinetic Pathways and Rate Parameters for N20 Decomposition Modeling

Reaction A Factor b Ea

N + 02 = NO + 0 6.40E09 1.0 6280.

N + NO = N2 + 0 3.30E12 0.30 0.

NO2 + it = NO + 0 + M 1.10E16 0. 66000.

NO2 + 0 = NO + 02 1.OOE13 0. 600.

N2 0 + M = N2 + 0 + M 1.60E14 0. 51600.

N2 0 + 0 = NO + NO 1.00E14 0. 28200.

N2 0 + 0 = N 2 + 02 1.00E14 0. 28200.

I1. EXPERIMENTAL

The shock tube used in these studies is stainless steel with a 98 iam
inside diameter. The driver section is 1.2 n long; the driven (test) section
is 6.2 m long in the configuration used in the present study. For "typical"
test conditions, with a 0.0075 inch thick Mylar polyester diaphragm, an
initial test section pressure of 70 Torr (9.2 KPa) and a driver pressure of
70 psi (470 KPa) of helium yield an incident shock Mach number near 2.9.
Calculated temperature and pressure values behind this shock are 804 K and
0.93 atm (93 KPa). The calculated values after passage of the reflected shock
for these same initial conditions are 1360 K and 4.5 atm (450 KPa). Pressure
gauge measurements have been used to verify that the actual values reached are
near the values calculated over the range of interest here. Various
combinations of initial test pressure and diaphragm thickness are used to
obtain desired pressure/temperature combinations. Using pure helium as the
driver gas gives useful test times on the order of one millisecond; these
values are adequate for ignition times here, which are typically 50 0ps or
less.

The layout of the test end of the shock tube is shown in Figure 2. The
main instrumentation consists of piezoelectric pressure transducers mounted at
positions 55 and 768 mm from the end wall to follow the shock wave propagation
and a 1P28 photomutiplier tube (PMT) which is mounted to record the light
through a window in the end wall of the shock tube. Light detected by the PMT
is filtered by neutral density filters (typical density 2.0 to 3.0) and a red-
pass colored glass filter which passes light below 550 nm. It is expected
that the detected light during combustion is dominated by sodium emission.
The output of the pressure transducers and PMT are recorded by a digital
scope; the records are ported to a computer for analysis as required. The
sample of TEAN to be ignited is placed on a one inch diameter disk with
feathered edges mounted in the center of the tube 210 mm from the end wall.
The TEAN is ground to a fine powder of unknown particle size; typical sample
size is about 20 mg. In the course of an experiment, the incident shock
sweeps the powder off the disk and disperses it in the region between the disk
and the end wall. The experiment may be done such that the incident pressure
and temperature are high enough to ignite the sample. Alternatively, and in
most of the present observations, the incident temperature rise -an be low
enough that the reflected shock and its associated temperature rise are

2



required to ignite the sample. In a typical case near 1360 K, TEAN particles
moving with the gas velocity behind the incident shock interact with the
reflected shock wave approximately 500psec after passage of the incident
shock. Pressure records with the disk present do not differ measurably from
those without, indicating that perturbation to the flow is minimal.
Thermochemical calculations are made of the characteristics of the incident
and reflect shock to obtain predicted pressure and temperature conditions in
the tube. The pressure is measured directly; as long as these measurements
agree with the calculations, it is assumed that behavior is reasonably ideal
and that the predicted temperature is achieved.

IV. OBSERVATIONS

A typical photonultiplier record is shown in Figure 3 for a calculated
4

reflected shock pressure of 4.6 atmospheres (0.46 MPa) and a temperature of
1460 K. Zero time in this and other similar plots is the calculated time that
the smallest TEAN particles, those assumed to move with the gas velocity
behind the incident shock, interact with the reflected shock. The two curves
are clearly distinguishable by intensity; however, a careful comparison of the
intensities and shapes at early times shows little difference in that
region. Attempts to subtract the background from the signal has shown that
very small changes in the background make big differences in the apparent time
of onset of ignition based on the light signal. Thus, unless either the
background light can be greatly suppressed or much better reproducibility can
be achieved, quantifying measurements such as this will be difficult.
Ignition at a slightly lower temperature and pressure is shown in Figure 4,
with values of 3.2 atm (0.32 MPa) and 1460 K. In this second case, the delay
before ignition is sufficient to separate the resulting light from the
background. Also shown in the figure is the difference between the ignition
signal and the background. For these conditions, this difference curve,
including the negative portion, has been found to be quite reproducible. The
negative portion of the difference curve is probably due to a decrease in the
background when the TEAN is present. The cause is unknown; it may be due
either to cooling or obscuration. In cases such as this one, it is clear that
one could define a consistent and reproducible criterion for ignition.

In addition to the evidence of ignition from the emitted light, pressure
records show clear increase in pressure when ignition occurs, especially when
it occurs past the peak pressure. In Figure 5 is shown the pressure
differential from an event at 1350 K along with the corresponding light
emission. As can be seen, the pressure pulse at station one and light
emission are well correlated. In general such pressure differences show this
behavior in these experiments; however, the signal to noise can be much less
than desired. In the example shown in Figure 5, the additional pressure from
TEAN combustion is near one atmosphere, almost one-fourth the maximum pressure
of the reflected shock.

A limited number of observations were made with a similar mixture of
oxygen in argon, the goal being to compare light and pressure signals if
ignition were to occur. Based on light emission records, the main
observations were that (1) there is ignition in oxygen with corresponding
light intensity well above the background level and (2) the ignition takes
place at lower temperatures and probably with shorter delay times than with
N20 under the same conditions.

3



V. DISCUSSION

While it is clear from both the light emission and pressure records that
ignition of the TEAN is occurring, some ambiguity of the significance of these
observations remains. The first is related to the degree and effect of any
decomposition of the nitrous oxide. Clearly further studies in the
characterization of the gas composition versus time needs to be done. This
goal probably can be met by diagnostics on the presence of NO2 or other
products in the decomposition process. Refinement of the model rate constants
and pathways of decomposition could also be pursued to determine probable
limits of composition versus time. The observation that oxygen ignition is
more prompt than with N20 suggests that the N20 decomposition either is not as
fast as we calculate or the products do not substantially accelerate the
ignition reactions. This question can also be addressed by decreasing the
concentration of oxidizer in the inert gas.

Another element of this work which requires refinement is the definition
of time to ignition of the solid material. The signal-to-background ratio may
be greatly improved by use of a narrow band optical filter at the wavelength
of some key combustion radical such as OH or CN. In this case one could use
the earliest light as evidence for ignition of the smallest solid particles.
Alternative definitions are being developed. This definition is critical to
establishment of ignition delay versus temperature and pressure. The use of
high-speed photography for distiction by spatial location of the light
emission is also a possibility.

A third question which remains to be addressed is whether the TEAN is
reacting as a solid or first undergoes thermal decomposition followed by gas
phase reactions. Attempts will be made in continuing studies to characterize
the process more fully, as well as to measure the kinetics parameters.

VI. SUMMARY

We have shown that TEAN powder ignites and burns with significant light
emission and pressure generation in a nitrous oxide/argon mix. Ignition
threshold appears to be above 1300 K. Ignition delay is a function of the
temperature and pressure of the gas. Ignition in oxygen takes place in
shorter times and at lower temperatures than with N20. Our calculations
indicate that the thermal decomposition of the N20 may be important in our
observations. Studies are presently underway to address various aspects of
these observations.

4
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